Online Sum-Radii Clustering

نویسندگان

  • Dimitris Fotakis
  • Paraschos Koutris
چکیده

In Online Sum-Radii Clustering, n demand points arrive online and must be irrevocably assigned to a cluster upon arrival. The cost of each cluster is the sum of a fixed opening cost and its radius, and the objective is to minimize the total cost of the clusters opened by the algorithm. We show that the deterministic competitive ratio of Online Sum-Radii Clustering for general metric spaces is Θ(logn), where the upper bound follows from a primal-dual online algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik et al., MFCS 2010), this result demonstrates that the deterministic competitive ratio of Online Sum-Radii Clustering changes abruptly, from constant to logarithmic, when we move from the line to the plane. We also show that Online Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit, we obtain a lower bound of Ω(log log n) on the randomized competitive ratio of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple randomized O(logn)-competitive algorithm, and a deterministic O(log logn)competitive algorithm for the fractional version of the problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Clustering to Minimize the Sum of Radii

In this paper, we study the problem of opening centers to cluster a set of clients in a metric space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic environment where clients arrive and depart, and the solution must be updated efficiently while remaining competitive with respect to the current optimal solution. We call this dynamic sumof-radii cluste...

متن کامل

Geometric Clustering to Minimize the Sum of Cluster Sizes

We study geometric versions of the min-size k-clustering problem, a clustering problem which generalizes clustering to minimize the sum of cluster radii and has important applications. We prove that the problem can be solved in polynomial time when the points to be clustered are located on a line. For Euclidean spaces of higher dimensions, we show that the problem is NP-hard and present polynom...

متن کامل

Dynamic Sum-Radii Clustering

Real networks have in common that they evolve over time and their dynamics have a huge impact on their structure. Clustering is an efficient tool to reduce the complexity to allow representation of the data. In 2014, Eisenstat et al. introduced a dynamic version of this classic problem where the distances evolve with time and where coherence over time is enforced by introducing a cost for clien...

متن کامل

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.

متن کامل

1-Bromo-2,4,6-tricyclo­hexyl­benzene

The title compound, C(24)H(25)Br, packs efficiently in the crystal structure with no solvent-accessible voids and several inter-molecular H⋯H contacts approximating the sum of the van der Waals radii. The mol-ecule is quite crowded, with intra-molecular Br⋯H and C⋯H contacts ca 0.38 and 0.30 Å, respectively, less than the sum of the corresponding van der Waals radii. All cyclo-hexyl rings adopt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 540  شماره 

صفحات  -

تاریخ انتشار 2012